1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
%@Auteur: Maxime Chupin
verbatimtex
%&latex
\documentclass{article}
\usepackage[latin1]{inputenc}
\usepackage{amsmath}
\usepackage{fourier}
\begin{document}
etex
input geometrie2d;
u=3cm;
v=3;
path r;
path carre;
carre = (0,0)--(1,0)--(1,1)--(0,1)--cycle;
for i=0 upto 72:
beginfig(i+1);
% excentricité : 0.65
numeric a,b,c,e,ya,xa,yb,xb,w,m,xm,ym;
e := 0.65;
a := 1.3u;
b := a*sqrt(1-e**2);
c := a*e;
pair M,T,F,H,A,B,M';
path ellipse,tangente,monge,tang,arc,vraitang;
ellipse = fullcircle xscaled 2a yscaled 2b;
% axes
pickup pencircle scaled 0.6pt;
draw(-5u,0)--(5u,0);
draw(0,-5u)--(0,5u);
pickup pencircle scaled 1pt;
draw ellipse withcolor green;
drawarrow (0,0)--(0.6u,0);
drawarrow (0,0)--(0,0.6u);
pickup pencircle scaled 0.5pt;
% directrice
z3=(a/e,0);
z4=(a/e,2u);
draw 5[z3,z4]--5[z4,z3];
z6=(-a/e,0);
z7=(-a/e,2u);
draw 5[z6,z7]--5[z7,z6];
% M
xm:=a*cosd(30+5*i);
ym:=b*sind(30+5*i);
M = (xm,ym);
%tangente en M
path tangente;
if (xm<>0) and (ym<>0):
ya=0;
xa=a*a/xm;
yb=b*b/ym;
xb=0;
fi;
if (ym=0) and (xm<>0):
ya=0;
xa=(a*a)/xm;
yb=2u;
xb=(a*a)/xm;
fi;
if (xm=0) and (ym<>0):
xa=0;
ya=(b*b)/ym;
xb=2u;
yb=(b*b)/ym;
fi;
%définition de daux points de coordonnés xa,ya et xb,yb
A = (xa,ya);
B = (xb,yb);
% cercle de monge
monge := fullcircle scaled 2sqrt(a*a+b*b);
pickup pencircle scaled 0.8pt;
% tracé de la droite
draw 10[A,B]--10[B,A] withcolor blue;
tangente := 10[A,B]--10[B,A];
% point d'intersection
arc := halfcircle scaled 2sqrt(a*a+b*b) rotated (15+5*i) ;
T = arc intersectionpoint tangente;
% tracé du cercle
if i=0:
r := T;
else:
r := r--T;
draw r withcolor red;
fi;
% tangente en M'
F=(0,0);
if (xm<>0) and (ym<>0):
w=1*u;
m=(a*a)/(b*b)*ym/xm*u;
fi;
if (xm=0) and (ym<>0):
w=0;
m=2u;
fi;
if (ym=0) and (xm<>0):
w=2u;
m=0;
fi;
z2=(w,m);
H=z2;
tang = 5[F,H]--5[H,F];
vraitang := tang shifted T;
draw tang shifted T withcolor blue;
% z5= vraitang intersectionpoint ellipse;
%carré
pickup pencircle scaled 0.7pt;
draw carre scaled 10 rotated (angle(T-M)+90) shifted T
dashed evenly withcolor 0.2white;
% labels
% i,j
label.bot(btex $\vec \imath$ etex, (0.3u,0));
label.lft(btex $\vec \jmath$ etex, (-0.01u,0.3u));
% points
% label.lft(btex $M'$ etex, z5);
dotlabel.urt(btex $T$ etex, T);
dotlabel.urt(btex $M$ etex, M);
dotlabel.urt(btex $O$ etex, (0,0));
% droites
label.lft(btex $\delta$ etex,(0,-1.8u));
label.lft(btex $\cal D$ etex,(-2u,-1.8u));
label.rt(btex ${\cal D}'$ etex,(2u,-1.8u));
% titre
label.urt(btex \begin{LARGE}\textit{Le cercle de Monge}\end{LARGE} etex, (-1.5*a,1.3*a));
label.urt(btex \begin{LARGE}$x^2+y^2=a^2+b^2$\end{LARGE} etex, (0.3*a,1.3*a));
clip currentpicture to
(-2.5u,-2u)--(-2.5u,2u)--(2.5u,2u)--(2.5u,-2u)--cycle;
endfig;
endfor;
end
Không có nhận xét nào:
Đăng nhận xét